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SUMMARY 
Often, when a large number of variables are 

observed, little information is lost if some of 

the variables are discarded. A method based on 

factor analysis is proposed for selecting the 

variables to be rejected. An example is given 

wherein the method is used to reduce the number 

of questions on a questionnaire. 
1. INTRODUCTION 

In some multivariate situations it is de- 
sirable or even necessary to reduce the number of 

variables and work with a "good" subset. A me- 

thod such as principal component analysis could 
be used to obtain a set of new variables defined 

as linear combinations of the original variables. 
Often a relatively small set of such new variables 
will preserve most of the information. However, 
in some cases the new variables are not useful. 
For example, suppose it is required to reduce the 
size of a questionnaire or test. It is usually 
not practicable to use new questions defined as 
linear combinations of the original ones. Even 

if such new questions could be identified and 
phrased meaningfully a problem arises in their 
use. If the subjects are asked to respond to the 

new questions it will be found that their answers 

are correlated. Much information is thereby lost 
since the new variables would be independent if 

obtained as orthogonal functions of the original 
variables. 

In most common multivariate situations, the 
intended analysis is of greater interest than a 
prior reduction in the number of variables. How- 

ever, in many cases the results will be only 

slightly affected if certain variables are dis- 

carded before performing the analysis. The en- 
suing savings in the number of required measure- 

ments would be especially helpful in situations 
which recur routinely. 

2. ALTERNATIVE SELECTION METHODS 
Several methods have been suggested for se- 

lection of variables. The following three ap- 
proaches are discussed extensively by Jolliffe 
(1972, 1973). 

(1) A stepwise multiple correlation method 
which discards successively the variable having 
the largest multiple correlation with the remain- 
ing variables. An empirically determined stop- 
ping point is suggested. 

(2) Principal component methods which asso- 

ciate a variable with each of the principal com- 
ponents and discard those variables associated 
with the principal components having the smallest 
corresponding eigenvalues. An empirically deter- 
mined cut off point is proposed. 

(3) Clustering methods which segregate the 
variables into groups and select one variable 
from each of the resulting groups. The cluster- 
ing stops when an empirically determined termin- 
ation point is reached. 

These three methods together with variations 
are compared by Jolliffe using both real and ar- 

tifical data. None of the methods was found to 
be uniformly superior to the others. 

3. A METHOD BASED ON FACTOR ANALYSIS 
Intuitively, it seems one should be able to 
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examine the correlation matrix and from the pat- 
terns therein discover which variables can be 
most readily sacrificed as providing the least 
additional information above that already available 
in their fellows. The three methods listed in 

Section 2 are in fact based on extracting infor- 
mation from the correlation matrix. Other sim- 
pler but less efficient approaches readily sug- 
gest themselves. For example, the sum of squares 
of each row of the correlation matrix could be 
examined and the variable with the largest sum of 
squares deleted. This process could be continued 
in a stepwise fashion after deletion of the ap- 

propriate row and column at each step. It appears 
however, that this procedure would be inferior to 
the first method reported in Section 2. It might 
be considered only if time or computational limi- 
tations prescribed its use. A far more satisfac- 
tory procedure for examining the correlation ma- 
trix is now described. 

Consider the usual (orthogonal) factor ana- 
lysis model for p variables expressed in terms of 
m factors. 
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xp + xp2f2 + + apmfm + ep 

In matrix form (1) can be expressed as 
x = + e. The following will be assumed: E(x) =0, 

cov(x) = E,E(f) = 0, cov(f) = I, E(e) = 0, 

cov(e) = = diag(T1,...,vp), and e and f are 

independent. From these assumptions it follows 
that 

= AA' + T. (2) 

In practice the correlation matrix is often used 
in place of E. 

If two variables xi and x. have nearly iden- 

tical loadings on the m factors, they contribute 
similar information and one of the two may be de- 
leted. The following weighted distance function 
is suggested as a measure of the degree of close- 
ness or similarity of xi and : 

d. - 
+...+ 

wm(xim (3) 

If the aik are estimated by factoring E (or E -v) 

using eigenvalues and eigenvectors, appropriate 
weights are provided by the eigenvalues. Thus, 
w1 is the largest eigenvalue, w2 is the next lar- 

gest, etc. If another method has been used to es- 
timate the loadings or if they have been rotated, 



appropriate weights can be found from 

w = x? k = 1, 2, ..., m. 

The following procedure is suggested to de- 

termine which variables can best be discarded. 

Find for each pair xi and x., i j. Ar- 

range these in ascending order. Then from the 

pair of x's with smallest distance function value, 
retain the one with smaller value and delete the 
other. Similarly, one of the two variables with 
next smallest dij can be deleted. This process 

can continue until as many variables as desired 

are discarded. In each case when choosing be- 

tween two variables it seems preferable to retain 

the one with smaller value of T. If two variables 

are found to be similar and later each is found to 

be close to a third variable, two of the three 
may be deleted. This suggests the possible use 
of a clustering procedure. However, cluster 
analysis is not recommended due to the problem to 
be discussed next which can best be handled in 

the pairwise framework. 
Negative correlations have an effect on the 

location of points in the space of factor load- 
ings. If the response on a question is given on 

a multipoint ordered scale between poles, a re- 
versal of the poles will change the sign of the 
correlation of the given question with all others. 
From (2) it is clear that 

= i 

A change in sign produces 

= 

Thus, either (a. ,À. ,a ,X.. ) 

it i2 im 

has all signs reversed and appears on the opposite 
side of the origin from its original position. If 

two points are close together in the factor load- 
ing space, a reversal in sign of the correlation 
between the two variables they represent would 
place the two points very far apart. The dis- 

tance function would then fail to detect 

the close similarity between the two variables. 
Allowance can be made for this possibility when 
making each comparison by considering E wk(xik 

+ 
)2 as well as E 

wk(Xik -Xjk)2 
in each case and 

choosing the smaller as the distance between the 

two variables in question. Thus (3) becomes 

= min 
{kwk(Xlk -X. )2, 

+ajk)2 }. (4) 

If the number of variables to be discarded 

has not been predetermined, some visual assistance 
in arriving at an appropriate value can be ob- 
tained by ordering the distances and plotting them. 
The plot can then be examined for a turning point 
where a noticeably steeper ascent begins. 

4. EXAMPLE 
A teacher evaluation survey was administered 

periodically to determine students' rating of 
their university teachers. The major part of the 
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questionnaire consisted of 22 questions about 
various aspects of teacher effectiveness. When 
a revision was contemplated, information was sought 

as to whether some of the questions could be de- 
leted with little sacrifice in information. A 
shorter questionnaire would meet with less student 
resistance. 

A factor analysis was performed using a cor- 
relation matrix obtained from past survey results. 
It was found that 17 factors were required to ex- 

plain 95% of the variation. The distance function 
(4) was calculated for each of the 231 pairs of 
variables. The smallest 20 of these are given in 
Table 1. The remaining distances ranged up to a 

high of 2.875. 
TABLE I 

Pairs :of questions with smallest distance functions 

Question 
Pair Distance 

Question 
Pair Distance 

19,20 .023 14,19 .657 

21,22 .041 2,19 .797 

8,20 .151 2,20 .877 

8,19 .170 5,19 1.016 
1,16 .172 8,14 1.072 
2, 7 .174 7,19 1.082 
8,10 .352 5,20 1.112 

10,19 .453 2,14 1.113 

10,20 .473 2, 8 1.132 

14,20 .603 13,19 1.163 

Note that the pair of variables that are 
closest, 19 and 20, are also both very close to 8. 

Thus, only one of these three variables need be 
retained. 

As an aid to determining how many questions 
might appropriately be deleted, the first 15 dis- 
tances are plotted in Figure 1. There is a defi- 

nite change in pattern from the sixth to seventh 
value. It seems clear that a variable can be de- 
leted from each of the first two pairs with al- 
most no loss of information. The next four dis- 
tances also appear small enough to warrant de- 
letion of one variable from each pair if desired. 
Beyond that point, however, further deletion may 
not be justified. 

(FIGURE 1 HERE) 

5. DISCUSSION 
The methods discussed by Jolliffe (see Sec- 

tion 2) appear to be well suited to situations 
where a rather small subset of the original vari- 
ables is adequate. The present method is recom- 
mended where relatively few (up to one -third, say) 
of the variables are to be discarded. This situa- 
tion can be readily identified when the factor 
analysis indicates that a rather large number of 
factors are required to "explain" the data. 

The method of this paper has the added ad- 
vantage of simplicity of operation. It is easily 
programmed and can be included as an option in a 
standard factor analysis routine. The resulting 
ordered distance values can be examined meaning- 
fully by someone with little statistical expertise. 

The number of factors to be used is somewhat 
arbitrary. Good results will be obtained by re- 
taining at least enough to "account for" about 95% 
of the variance in the system. 



REFERENCES 

JOLLIFFE, I. T. (1972). Discarding variables in 
a principal component analysis. I: Arti- 
ficial data. Appl. Statist., 21, 160 -173. 

JOLLIFFE, I. T. (1973). Discarding variables in 

a principal component analysis. II: Real 

data. Appl. Statist., 22, 21 -31.. 

1.0 

.6 

.4 

.2 

Ì 11 II I 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Question pair (ordered) 

Figure 1. The 15 smallest distance values. 
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